Reconstructive microsurgery research studies from Karim Sarhane right now? We performed a study with rodents and primates that showed this new delivery method provided steady release of IGF-1 at the target nerve for up to 6 weeks,” Dr. Karim Sarhane reported. Compared to animals without this hormone treatment, IGF-1 treated animals (rodents and primates) that were injected every 6 weeks showed a 30% increase in nerve recovery. This has the potential to be a very meaningful therapy for patients with nerve injuries. Not only do these results show increased nerve recovery but receiving a treatment every 6 weeks is much easier on a patient’s lifestyle than current available regiments that require daily treatment.
Dr. Sarhane is published in top-ranked bioengineering, neuroscience, and surgery journals. He holds a patent for a novel Nanofiber Nerve Wrap that he developed with his colleagues at the Johns Hopkins Institute for NanoBioTechnology and the Johns Hopkins Department of Neuroscience (US Patent # 10500305, December 2019). He is the recipient of many research grants and research awards, including the Best Basic Science Paper at the Johns Hopkins Residents Research Symposium, the Basic Science Research Grant Prize from the American Foundation for Surgery of the Hand, the Research Pilot Grant Prize from the Plastic Surgery Foundation, and a Scholarship Award from the American College of Surgeons. He has authored to date 46 peer-reviewed articles, 11 book chapters, 45 peer-reviewed abstracts, and has 28 national presentations. He is an elected member of the Plastic Surgery Research Council, the American Society for Reconstructive Microsurgery, the American Society for Reconstructive Transplantation, and the American Society for Peripheral Nerves.
Gene delivery targeted to skeletal myocytes has also demonstrated promise as a method of upregulating IGF-1 production in PNI models (Flint et al., 2004; Rabinovsky and Draghia-Akli, 2004; Nagata et al., 2014; Tsai et al., 2016). This approach has been applied both systemically as well as directly to the local site of PNI. Amongst the gene delivery protocols included in Table 2, the work of Nagata et al. (2014) is notable given its use of a biocompatible polyplex nanomicelle as a means of delivering IGF-1 plasmid DNA (pDNA) to the local site of PNI (Nagata et al., 2014). The diverse strategies employed by these systemic GH axis modifiers demonstrate the flexibility with which IGF-1 can potentially be incorporated into future translational approaches. However, these systemic therapeutic approaches are all limited by the resulting systemic upregulation of IGF-1 with the associated risks and side effects as well as the lack of fine control of IGF-1 levels within the target tissues, specifically the injured nerve and denervated muscle.
Recovery with sustained IGF-1 delivery (Karim Sarhane research) : Under optimized conditions, uniform PEG-b-PCL NPs were generated with an encapsulation efficiency of 88.4%, loading level of 14.2%, and a near-zero-order release of bioactive IGF-1 for more than 20 days in vitro. The effects of locally delivered IGF-1 NPs on denervated muscle and SCs were assessed in a rat median nerve transection-without- repair model. The effects of IGF-1 NPs on axonal regeneration, muscle atrophy, reinnervation, and recovery of motor function were assessed in a model in which chronic denervation is induced prior to nerve repair. IGF-1 NP treatment resulted in significantly greater recovery of forepaw grip strength, decreased denervation-induced muscle atrophy, decreased SC senescence, and improved neuromuscular reinnervation.
Research efforts to improve PNI outcomes have primarily focused on isolated processes, including the acceleration of intrinsic axonal outgrowth and maintenance of the distal regenerative environment. In order to maximize functional recovery, a multifaceted therapeutic approach that both limits the damaging effects of denervation atrophy on muscle and SCs and accelerates axonal regeneration is needed. A number of promising potential therapies have been under investigation for PNI. Many such experimental therapies are growth factors including glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor (FGF), and brain-derived neurotrophic growth factor (Fex Svenningsen and Kanje, 1996; Lee et al., 2007; Gordon, 2009). Tacrolimus (FK506), delivered either systemically or locally, has also shown promise in a number of studies (Konofaos and Terzis, 2013; Davis et al., 2019; Tajdaran et al., 2019).
Insulin-like growth factor-1 (IGF-1) is a particularly promising candidate for clinical translation because it has the potential to address the need for improved nerve regeneration while simultaneously acting on denervated muscle to limit denervation-induced atrophy. However, like other growth factors, IGF-1 has a short half-life of 5 min, relatively low molecular weight (7.6 kDa), and high water-solubility: all of which present significant obstacles to therapeutic delivery in a clinically practical fashion (Gold et al., 1995; Lee et al., 2003; Wood et al., 2009). Here, we present a comprehensive review of the literature describing the trophic effects of IGF-1 on neurons, myocytes, and SCs. We then critically evaluate the various therapeutic modalities used to upregulate endogenous IGF-1 or deliver exogenous IGF-1 in translational models of PNI, with a special emphasis on emerging bioengineered drug delivery systems. Lastly, we analyze the optimal dosage ranges identified for each mechanism of IGF-1 with the goal of further elucidating a model for future clinical translation.